
Tutorial
Last update: 24th May 2024

Reference version of MORTAR: v1.2.0.0

Contents
Introduction 1
Installation and start-up 2

Windows 2
Linux and macOS 2

Molecule set import and preferences 5
Single fragmentation 10
Fragments tab 14
Items tab 19
Pipelining fragmentation 21
Overview view 25
Histogram view 28
About view 31
Application exit 33
Integration of new fragmentation algorithms 34
Known issues 35

Handling of polymers 35
Explicit Hydrogen atoms 35
Non-standard bond orders in MOL/SD files 36
Scaffold Generator fragmentation runtime 36
Ertl algorithm fragmentation runtime 37



Introduction
MORTAR ('MOlecule fRagmenTation fRamework') is an open software project that supports

workflows of molecular in silico fragmentation and substructure analysis. The Java/JavaFX

rich-client application offers extensive graphical functions for visualising the fragmentation

results of individual compounds or entire compound sets. With several views and analysis

functions, MORTAR supports the interpretation of in silico fragmentation results. In addition

to three currently integrated methods for fragmentation and substructure analysis -

ErtlFunctionalGroupsFinder, Sugar Removal Utility, and Scaffold Generator (CDK-Scaffold

module) - MORTAR allows straightforward integration of additional fragmentation algorithms

with automatic generation of settings menus. All cheminformatics functionalities are

implemented based on the Chemistry Development Kit (CDK, https://cdk.github.io/).

A scientific article describing MORTAR can be found here: MORTAR: a rich client application

for in silico molecule fragmentation (Baensch et al. 2023) (please cite it if you are using

MORTAR for your scientific work). The MORTAR GitHub repository where you can download

the software, browse the source code, and report issues can be found here:

https://github.com/FelixBaensch/MORTAR.

1

https://doi.org/10.1186/s13321-019-0361-8
https://doi.org/10.1186/s13321-020-00467-y
https://doi.org/10.1186/s13321-022-00656-x
https://github.com/cdk/cdk-scaffold
https://github.com/cdk/cdk-scaffold
https://cdk.github.io/
https://doi.org/10.1186/s13321-022-00674-9
https://doi.org/10.1186/s13321-022-00674-9
https://github.com/FelixBaensch/MORTAR


Installation and start-up
Pre-compiled and executable MORTAR distributions can be found attached to the marked

releases.

Windows

A convenient Windows OS installer executable for MORTAR is available (click here to

automatically download the installer .exe of the latest version). Download the installer

executable, start, and follow the instructions to install MORTAR. Note that the installation

includes a full Java Runtime Environment (JRE). After installation, create a shortcut to an

appropriate MORTAR start batch file on your Windows desktop. E.g. for MORTAR to use up

to 4 gigabytes of RAM, copy a shortcut to the batch file "MORTAR.bat" which is located in

the MORTAR program folder (default “C:\Program Files\MORTAR\MORTARv1.2.0.0\bin” or

the path specified at installation). To start MORTAR, double-click the created shortcut.

MORTAR can be uninstalled by the provided “Uninstall.exe” executable in the MORTAR

program folder or by standard Windows functions.

As an alternative to "MORTAR.bat", there is also the "MORTAR_20GB.bat" batch file

available that allocates up to 20 GB of RAM for MORTAR. If you want to configure your own

heap space settings, open one of the provided batch files and adjust the line

set DEFAULT_JVM_OPTS="-Xms4g" "-Xmx4g"

with your chosen initially allocated memory (-Xms) and maximum value (-Xmx) accordingly.

Should this installation or the execution of the batch files not work for you, try the guidelines

for Linux and macOS described below. As an alternative way, they should also work on

Windows.

Linux and macOS

Every release has the executable Java ARchive (JAR) "MORTAR-fat-1.2.0.0.jar" attached,

which contains the packaged MORTAR code together with all dependencies (click here to

automatically download the JAR of the latest version). To run MORTAR (with up to 4 GB of

RAM available, e.g.), execute the JAR from the command line using

java -jar -Xms512m -Xmx4g <path to>MORTAR-fat-1.2.0.0.jar

2

https://github.com/FelixBaensch/MORTAR/releases
https://github.com/FelixBaensch/MORTAR/releases
https://github.com/FelixBaensch/MORTAR/releases/download/v1.2.0.0/MORTAR_v1.2.0.0_WINx64_installer.exe
https://github.com/FelixBaensch/MORTAR/releases/download/v1.2.0.0/MORTAR-fat-1.2.0.0.jar


A JDK or JRE of version 21.0.1 or higher must be installed on your system and linked to the

"java" command. Otherwise, replace "java" with the path to the java command of a specific

JDK or JRE.

Execute the command in the directory where the JAR is situated or use its explicit path

instead of <path to>.

Adjust the initially allocated memory (-Xms) and maximum memory to be used (-Xmx)

according to your preferences.

Please note that MORTAR only supports x64 (on all three platforms) and AArch64 (on

macOS and Linux) architectures in general. For the latter, a special "fat JAR" named

"MORTAR-fat-aarch64-1.2.0.0.jar" is available from the distributions attached to the releases

and must be used (click here to automatically download the AArch64 JAR of the latest

version).

Also note that using the Windows Subsystem for Linux (WSL) is not recommended, since a

lot of additional configurations have to be made there to run Java GUI applications.

The X / X11 / X Window System can be used to run a graphical application like MORTAR on

a remote server while displaying the graphical user interface on the local machine / personal

computer. This setup can be beneficial if more computing power or memory is required to

analyse large data sets. However, please note that while this is possible in principle,

unexpected behaviour from MORTAR may occur. We cannot take responsibility for or

recommend this way of deployment, similar to using the WSL as mentioned above.

After successful installation and start-up of the application, the MORTAR main window

(Figure 1) appears.

3

https://github.com/FelixBaensch/MORTAR/releases/download/v1.2.0.0/MORTAR-fat-aarch64-1.2.0.0.jar
https://www.x.org/wiki/


Figure 1: MORTAR main window.

4



Molecule set import and preferences
Before starting to work with MORTAR, inspect the global application preferences that can be

found in the upper-left menu bar at “Settings” -> “Preferences” (Figure 2). A dialog opens

that allows you to adjust several settings relevant to different functionalities (Figure 3).

Figure 2: Settings menu.

For the molecule set import, it can be specified whether implicit hydrogen atoms should be

added to fill possible open valances in the imported molecules. A short description for every

setting is given in tooltips that appear when the cursor hovers for a few seconds over one

setting element. In choice boxes, every individual option also has its individual tooltip. Using

the “Default” button in the bottom-left corner, all settings are reset to their default values. To

save your changes to the settings and close the dialogue, click the “Apply” button in the

bottom-right corner. With the “Cancel” button in the bottom-right corner, the dialogue is

closed without saving the changes to the settings.

5



Figure 3: Global application preferences dialog.

To import a molecule set, open the “File” menu in the MORTAR main window menu bar and

select the “Open” menu item (Figure 4) or simply drag and drop a MOL, SD, or SMILES file

into the MORTAR main window (Figure 1).

6



Figure 4: File menu.

An OS-dependent file chooser dialogue opens. Here, you can select a MOL, SD, or SMILES

file to import. With this tutorial, an SD file containing the first 250 hits of an anthraquinone

substructure search in the COCONUT natural product database is supplied. It can be found

in the application’s root directory in the “tutorial” folder, next to the PDF file of this tutorial.

Alternatively, you can find it in the MORTAR GitHub repository. After importing this set or any

molecular data set, the “Molecules” tab opens (Figure 5).

7

https://coconut.naturalproducts.net
https://github.com/FelixBaensch/MORTAR/tree/main/Tutorial


Figure 5: Molecules tab after import of the COCONUT anthraquinone substructure
search set.

The imported structures are displayed in a list on multiple pages and can be visually

inspected. With the pagination control at the bottom, you can switch between pages, go to

the first or last page, or jump directly to a specific page by entering the respective page

number into the text field and pressing “enter”. The left and right arrow keys or “page up” and

“page down” keys can be used as well to switch between pages. By using the “control” key

in combination with the left or right arrow key, you can jump to the first or last page,

respectively. The same can be done using the “home” or “end” key.

If possible, a name for each structure is extracted from the input file. By clicking the head of

the “Name” column, the structures can be sorted by their names in ascending or descending

order.

Using the first column, each molecule can be selected or deselected for fragmentation. Use

the column header to select or deselect all. Single-cell values (names and structure

depictions) can be copied to the clipboard using the right-click menu.

In the global preferences (Figure 3), you can adjust how many structures/rows should be

displayed per page.

8



For an alternative view of the imported set of structures, you can use the overview

functionality, which displays all structures in a grid layout on multiple pages and also offers

an enlarged structure view. In the “Molecules” tab, the overview view can be opened via the

“Overview” button in the bottom-right corner or via the menu bar at the top of the window

(“Views” -> “Overview”). Clicking on a structure depiction in the overview window opens the

enlarged structure view and a double-click closes the overview view and jumps to the

position of the respective structure in the main window of MORTAR. For a more detailed

description of the overview view, see the “Overview view” section of this tutorial below.

9



Single fragmentation
Using the “Settings” menu, a fragmentation algorithm for a single fragmentation can be

selected (Figure 6). In the current version, three algorithms are available:

● Ertl algorithm for functional group detection: The algorithm published by Dr Peter

Ertl is the first approach to detecting functional groups in organic molecules using a

rule set-based algorithm, instead of a predefined list of functional group structures. It

is available in MORTAR via the open, CDK-based implementation

ErtlFunctionalGroupsFinder.

● Sugar Removal Utility (SRU): The SRU is an algorithm and open, CDK-based Java

tool to detect sugar moieties in organic molecules, especially natural products, and

remove them to produce the molecule core or aglycone.

● Scaffold Generator: Scaffold Generator is an open tool that re-implements common

scaffold or framework approaches like Murcko frameworks, scaffold trees, and

scaffold networks based on CDK. It forms the basis of the CDK-scaffold module.

The currently selected fragmentation algorithm is also named in the bottom-left corner of the

“Molecules” tab on the button that is used to start the fragmentation (Figure 6).

10

https://doi.org/10.1186/s13321-017-0225-z
https://doi.org/10.1186/s13321-017-0225-z
https://doi.org/10.1186/s13321-019-0361-8
https://doi.org/10.1186/s13321-020-00467-y
https://doi.org/10.1186/s13321-022-00656-x
https://github.com/cdk/cdk-scaffold


Figure 6: Fragmentation algorithm selection.

Each fragmentation algorithm has its own set of specific settings that can be configured via

the “Fragmentation Settings” menu item in the “Settings” menu (below the “Fragmentation

Algorithm” menu item, see Figure 6). When the menu item is clicked, a dialogue opens,

displaying the settings of the currently selected algorithm (Figure 7). Using the tabs on the

left, the settings for the other algorithms can be inspected and adjusted. For documentation

on the individual settings, please refer to the publications linked above. A short description is

given in tooltips that appear when the cursor hovers for a few seconds over one setting

element. In choice boxes, every individual option also has its individual tooltip. Using the

“Default” button in the bottom-left corner, all settings for the currently displayed

fragmentation algorithm are reset to their default values. To save your changes to the

settings and close the dialogue, click the “Apply” button in the bottom-right corner. With the

“Cancel” button in the bottom-right corner, the dialogue is closed without saving the changes

to the settings. The settings of all fragmentation algorithms will remain as they were before

the dialogue was opened in this case.

11



Figure 7: Fragmentation settings.

After adjusting the settings and closing the dialogue, the single fragmentation can be started

using the “Ertl algorithm” button in the bottom-left corner of the “Molecules” tab (Figure 5). If

a different fragmentation algorithm is selected, its name is displayed on the button.

MORTAR uses parallel computing to speed up the fragmentation process. In the global

preferences, it can be specified how many parallel calculation threads should be employed

(Figure 3). The default value is set to 4 if your system has 4 or more available threads. For

some fragmentation algorithms, employing more than 4 parallel fragmentation threads did

not yield an additional performance boost in testing. But all users are invited to test this by

themselves on their own machines. The maximum value of the setting is the maximum

number of logical processors the specific machine has to offer. This number is determined

by MORTAR and named in the tooltip of the setting in the global preferences dialog (Figure

3). Additionally, an error will be raised if a number higher than the maximum value is entered

in the text field. In general, it is also not recommended to set the setting to this maximum

value exactly because MORTAR anyway cannot block every available thread of your

machine at the same time.

12



Note that the fragmentation settings and the global preferences are persisted for the next

session when the application is shut down.

13



Fragments tab
When the fragmentation has finished, two new tabs open to display the fragmentation

results. One is the “Fragments” tab which focuses on the different fragments generated in

the process (Figure 8). For the Ertl algorithm, these are functional groups and alkane

remnants resulting from the extraction of the former.

Figure 8: Fragments tab.

The first two columns display the SMILES codes and structures of the fragments. Note that

aromaticity is displayed in the depictions if possible and denoted in the SMILES

representations by the usage of lower-case letters for the respective aromatic atoms. The

third and fourth columns contain the name and structure of the first molecule the respective

fragment was identified in. The last four columns display the frequency of each fragment in

the given data set. The basic “Frequency” indicates how often a fragment was identified, i.e.

if a molecule contained the same type of fragment multiple times, it is counted multiple times

here. The “Molecule Frequency”, on the other hand, expresses how many molecules the

respective fragment was identified in, i.e. the same fragment appearing multiple times in one

14



molecule is counted only once here. Single-cell values can be copied to the clipboard using

the right-click menu. The table can be sorted in ascending or descending order according to

most of the columns' values by clicking the column heads. E.g. by double-clicking the

“Frequency” column label, the fragments are sorted according to their frequency descending

and the most frequent fragments are displayed first (Figure 9). The column arrangement can

also be adjusted by dragging and dropping the columns.

Figure 9: Fragments sorted by decreasing frequency.

For an alternative view of the set of fragments, the overview view functionality can be used.

As for the “Molecules” tab, it is accessible via a button in the bottom-right corner of the

window or via the menu bar at the top (“Views” -> “Overview”). The overview view can also

be used to display the whole set of parent structures of an individual fragment. This option is

accessible via the context menu in the respective row of the “Fragments” tab (“Parent

Structures Overview” menu item). In the “Parent Structures Overview”, the fragment is

placed in the first position on the first page of the view and highlighted. For more details, see

the “Overview view” section of this tutorial below.

15



The fragmentation results can also be visualised using the histogram view functionality. In

this window, the most frequent fragments are displayed in a configurable histogram in

decreasing order of their frequencies. By hovering over a bar in the histogram, a 2D

depiction of the respective fragment is displayed in the bottom-right corner of the window; via

the right-click menu of a specific bar, the SMILES code or structure depiction of a fragment

can be copied to the clipboard. As for the overview view functionality, the histogram view

functionality is available via a button in the bottom-right corner of the fragments tab or via the

menu bar at the top (“Views” -> “Histogram”). It is described in more detail in the “Histogram

view” section of this tutorial below.

With the two buttons in the bottom-left corner of the fragments tab, the displayed data can be

exported to a comma-separated value (CSV) or portable document format (PDF) file. A file

chooser dialogue allows you to specify where the created files should be written. The CSV

file contains the SMILES code and all four frequency notations for every fragment. The

employed separation character can be adjusted in the global preferences dialog (Figure 3).

The PDF file additionally includes depictions of the fragment structures. The PDF export

functionality is implemented based on the OpenPDF library by LibrePDF. Note that the PDF

export may take some time, especially for a greater number of fragments. When the export

is still running, it is indicated in the status bar at the bottom of the MORTAR window.

Additional export functionalities can be found in the “File” menu of the main menu bar in the

upper-left corner (Figure 10).

16

https://github.com/LibrePDF/OpenPDF


Figure 10: Fragments export menu.

In addition to the CSV and PDF export options, the fragment structures (without their

frequencies) can also be exported as structure data (SD) files using this menu. Optionally,

they can all be exported to one SD file or to separate files. In the global preferences dialog

(Figure 3), it can be specified whether SD/MOL file exports should always be done in the

MOL version 3000 format. If this is set to false, the export will be done in the MOL version

2000 format by default, except for molecules with more than 999 atoms that are too big for

the older MOL file version. The fragment molecules can also be exported as Protein Data

Bank (PDB) format files. In the generated PDB files, the “ATOM” and “CONECT” blocks are

used to store the molecular connection information. All bonds are represented as single

bonds and only explicit hydrogen atoms are included. If multiple individual files are exported

(SD or PDB), they are given the fragments’ molecular formulae as file names. The PDB

export requires atom coordinates for the fragments to be set but MORTAR does not retain

them if they were given in the input file. Therefore, during PDB export, 2D atom coordinates

that were originally intended for graphical layout are generated for the fragments. Note that

these do not represent genuine conformers of the fragments but they can be used as start

geometries for conformer sampling or structure optimisation in external tools. For the SDF

17



export, it is optional to generate these atom coordinates and include them in the exported

file(s).

18



Items tab
The other tab that displays the fragmentation results is the “Items” tab (Figure 11). Its focus

is on the individual molecules that were fragmented and the individual itemisation of their

resulting fragments.

Figure 11: Items tab (now in full-screen for better visibility).

In the first two columns, the fragmented molecules are listed with their names and

structures. The rows can be sorted according to the molecule names by clicking the column

header. Single-cell values can be copied to the clipboard using the right-click menu. The

following columns contain the fragments extracted from each molecule and how often they

appeared in the molecule. For the Ertl algorithm, functional group fragments are listed first

and alkane fragments second. But in general, there is not necessarily an order in which the

fragments are listed. Fragments that are not displayed initially can be accessed by scrolling

horizontally. Also, an overview view of all fragments of a respective molecule can be opened

via the right-click menu in a specific row. The histogram view functionality, which displays the

fragment frequencies in decreasing order, is available via the button in the bottom-right

corner or via the menu bar at the top of the window (“Views” -> “Histogram”). Note that it

displays the same results when opened from the “Fragments” or “Items” tab of a specific

fragmentation. For a more detailed description of both functionalities, see the “Overview

view” and “Histogram view” sections of this tutorial below.

19



Analogously to the fragments tab, the items tab data can be exported to CSV and PDF files

using the buttons in the bottom-left corner (Figure 11). The same two functionalities are

available as well in the main menu bar at “File” -> “Export” -> “Items”.

The fragments and items tab of every individual fragmentation are assigned unique names

based on the used fragmentation algorithm. When a new fragmentation is started from the

molecules tab (e.g. using different settings or a different fragmentation algorithm), the

already existing result tabs remain. They are only cleared away when a new molecule set is

imported. Please note that no tab persists when the application is shut down. You therefore

have to export all the data you want to keep.

20



Pipelining fragmentation
In the menu bar at the top of the MORTAR main window, the menu item “Pipeline” -> “Create

Pipeline” opens a dialogue where a fragmentation pipeline with different steps can be set up

(Figure 12).

Figure 12: Pipeline dialogue.

The text field at the top of the dialogue allows you to define an individual name for the

configured pipeline that will be used to label the result tabs. Below, the algorithm to use in

the first pipeline step can be chosen from a drop-down menu. Its settings can be configured

via the gear button on the right-hand side that opens a fragmentation settings dialogue for

the selected fragmenter (compare Figure 7). An additional fragmentation step can be added

via the “+” button below the gear. Note that the fragmentation settings here are specifically

set for the individual pipeline step, i.e. it is possible to employ the same fragmentation

algorithm multiple times with different settings. The fragmentation settings configured in the

pipeline dialogue do not affect the algorithm settings for the single fragmentations in the

21



main view but note that when a new pipeline fragmenter is added, it is initially configured

analogously to its settings in the main view and not(!) according to its default settings.

A very important setting in this context is the “returned fragments” setting that all three

currently available algorithms have (in Scaffold Generator, it is called “side chain setting”).

For the Ertl algorithm, for example, it allows you to define whether only functional groups,

only alkanes, or both types of fragments should be returned. This is important here because

all fragments generated in one pipeline step are processed with the next defined fragmenter.

One example use case of the pipeline functionality would be this: First, a deglycosylation

step with the Sugar Removal Utility (SRU) to remove sugar moieties. Then, a Scaffold

Generator processing to extract side chains from the resulting aglycones, discarding rings.

And finally, a functional group extraction using the Ertl algorithm to assess the functional

groups found in ring side chains in the given data set. To set up this pipeline, the first

fragmenter needs to be set to the SRU via the drop-down menu and the returned fragments

setting needs to be set to “only aglycone” via the gear button. The second fragmentation

step (added via the “+” button) needs to be set to Scaffold Generator and its side chain

setting set to “only side chains”. Also, the fragmentation type setting should be set to “main

scaffold” because parent scaffolds are not needed to generate the side chains. Finally, the

third fragmentation step needs to be set to the Ertl algorithm and its returned fragments

setting set to “only functional groups”. Here, the “Filter single atoms setting” should also be

set to “false” for the given use case. By default, the Ertl algorithm fragmenter does not

process input molecules that consist of only one heavy atom. But in the given example, we

would like to keep ring side chains like hydroxy groups or chlorine substituents and be able

to detect them as functional groups in the final pipeline result.

22



Figure 13: Pipeline configuration to extract side chain functional groups.

When the fragmentation has been set up (Figure 13), the settings can be saved (and the

dialog closed) using the “Apply” button in the bottom-right corner of the dialog. “Cancel”

discards all changes made to the pipeline definitions and “Default” (in the bottom-left corner)

resets everything to default values (compare Figure 12). To start the pipeline fragmentation

as defined (and save the settings), use the “Run” button in the bottom-right corner of the

pipeline settings dialog. Using the COCONUT anthraquinone subset, the results should look

like Figure 14 when sorted for their frequency decreasing, i.e. displaying the five most

frequent functional groups identified in the side chains. The most frequent group is an ether

or hydroxy group, followed by a hydroxy group connected to an aliphatic carbon atom that in

most cases results from a methyl-ether side chain. The third-frequent functional group is a

primary amine, followed by a nitro group. The fifth-frequent functional group is an ester or

carboxy acid functionality. For more details, inspect the items tab.

Note that the configured pipeline, like all other settings, is persisted at application exit and

re-imported at the next session.

23



Figure 14: Side chain functional groups of the COCONUT anthraquinone subset.

24



Overview view
The overview functionality mentioned in multiple places above serves as an alternative,

grid-based visualisation of molecular structures that allows you to inspect them more quickly

than in the list-based MORTAR main window. The imported molecule set, the generated

fragment sets, all fragments of an individual molecule, or all parent molecules of a specific

fragment can be visualised this way (see Figure 15). It can be opened via the menu bar

(“Views” -> “Overview”), action buttons in the lower-right corners of the respective tabs, or

the context menu.

Figure 15: Overview view showing the first 25 structures of the COCONUT
anthraquinone substructure search set.

The pagination control at the bottom can be used to switch between the individual pages of

the view. Its handling here is analogous to the pagination controls in the MORTAR main

window. Via the text fields and buttons in the bottom-left corner of the view, the number of

rows and columns of structures that are displayed per page can be adjusted. Changes are

25



applied via the “Apply” button or via pressing the “enter” key in one of the text fields. High

input values that would cause the structure depictions to be smaller than a defined minimum

size are ruled out by a window size-dependent maximum value for the x and y values. The

“Default” button can be used to return to the default grid configuration.

The individual structures can be enlarged in an additional view, the so-called “Enlarged

Structure View” (see Figure 16), with a single click on their depiction. In the overview view of

the “Molecules” and the “Fragments” tab, there is also the option of double-clicking on a

structure depiction to jump to the specific structure in the respective tab of the MORTAR

main window. A context menu, which is also available in the enlarged structure view, offers

the additional option to copy the respective SMILES code, Name/ID string, or image of each

structure to the clipboard. In the “Parent Structures Overview”, which visualises all parent

molecules of an individual fragment, the fragment is placed in the first position on the first

page of the view and highlighted, as can be seen in Figure 17. The same applies to the

“Items Overview”, where the fragmented molecule is highlighted against its fragments. The

overview window can be closed by clicking on the “Close” button in the bottom-right corner.

Figure 16: Depiction of a structure in the enlarged structure view.

26



Figure 17: Overview view of all parent structures of the highlighted fragment.

27



Histogram view
Another visualisation option for fragmentation results in MORTAR is the histogram view.

When a fragmentation process is finished, the histogram view can be opened via “Views” ->

“Histogram” in the menu bar at the top of the MORTAR main window (Figure 18) or via the

“Hist” button in the lower-right corner of the “Fragments” or “Items” tab.

Figure 18: Histogram view.

The histogram displays the fragment frequencies in decreasing order, i.e. the most frequent

ones are at the top. On the left axis, the fragment structures are listed as SMILES strings. By

hovering over a bar, the respective fragment structure can also be displayed as a 2D

structure diagram in the bottom-right corner of the window (Figure 19).

28



Figure 19: Structure display in histogram view.

At the bottom, multiple settings can be made to the visual appearance of the histogram. The

“Bar widths” setting can be used to adjust the bar widths and hence, how many fragment

frequencies are visible at once. Use the scroll bar at the right to see the other fragment

frequencies below. The overall number of fragments included in the histogram can be set via

“Displayed fragments”. To e.g. display only the 10 most frequent fragments, enter “10” into

the respective text field. Via the “Selected frequency” drop-down menu, it can be set whether

the fragment frequency (absolute occurrence of one fragment, see above) or the molecule

frequency (number of molecules the respective fragment appears in, see above) should be

displayed on the bars. The “SMILES length” setting can be used to set the maximum

SMILES string length to display on the left axis. If a SMILES representation is longer than

the defined maximum, the label on the axis will display “SMILES too long” for the respective

fragment. Note that changes to these four described settings in the bottom-left corner only

come into effect when the “Apply” button is clicked.

The settings in the bottom-right of the histogram view can be used to show or hide the

frequency labels next to the bars or grid lines in the histogram. Also, the shadows of the bars

can be deactivated. The “Show SMILES” option can be used to show/hide the fragment

29



SMILES representations on the y-axis of the histogram. Figure 20 shows the histogram view

with alternative styling using some of the described options.

By right-clicking on a bar, the SMILES code or structure depiction of a fragment can be

copied to the clipboard.

The histogram view can be closed by clicking on the “Close” button in the bottom-right

corner.

Figure 20: Alternative styling for histogram view.

30



About view
In the main menu bar, select “Help” -> “About” to open the “About” dialogue of MORTAR.

Here, the software version, licence, acknowledgements, contact information of the

developers, and information on the external open software projects MORTAR uses can be

found (Figure 21).

Figure 21: About view dialog.

The first button in the bottom-left corner opens the log file directory in an OS-dependent file

explorer. Internally, MORTAR writes information, like how many molecules were imported

and how many fragments were generated, to a text-based log file in this directory. Most

importantly, exceptions/problems that occur in an application session are logged there. For

every session, a new log file is created and older ones are deleted after some time.

The second button opens the MORTAR GitHub repository

(https://github.com/FelixBaensch/MORTAR) in your standard browser. Here, all important

information about MORTAR can be found, like the most recent version of the software and

31

https://github.com/FelixBaensch/MORTAR


known issues. To update your MORTAR distribution, download the most recent version from

GitHub. You can also have a look at the source code there. If you have a problem with

MORTAR, have any questions, or want to suggest a new feature, please post this in the

“Issues” section of the GitHub repository. If it is a problem, please describe it as well as you

can and attach the respective log file to your issue. This helps us to understand and solve

the issue faster.

The “Tutorial” button opens this tutorial document in your standard PDF file viewer (only

available on Windows OS; macOS and Linux users will be redirected to the online version of

the tutorial document in the GitHub repository).

32



Application exit
The MORTAR session can be ended via the OS-dependent controls at the top of the main

window or via “File” -> “Exit” in the main menu bar in the top-left corner.

A warning will be displayed that all generated fragmentation results will be lost when the

application is shut down. If you want to save them, export them in a format of your choosing

(see above). Note that no export format can later be used to fully restore the fragmentation

result as it is displayed in MORTAR (with fragments and items tab).

MORTAR checks at start-up that there is only one instance of the application running at a

time. Running multiple instances can cause problems in internal file access processes, like

logging and settings persistence. If MORTAR crashes, it may display a warning at restart

that there could be a second instance already running. In that case, this warning can be

ignored but otherwise, it is not recommended to run multiple MORTAR instances at once.

33



Integration of new fragmentation algorithms
MORTAR is intended to support the development of new in silico fragmentation algorithms in

the way that the integration of additional fragmentation algorithms should be achievable in a

straightforward manner. In principle, all substructure analysis logic that accepts one

molecule as an input and returns one or multiple substructures of it as output can be

integrated if it is implemented based on the Chemistry Development Kit. The new

functionality has to be wrapped in a Java class implementing the IMoleculeFragmenter

interface in the package

de.unijena.cheminf.mortar.model.fragmentation.algorithm. When this

wrapper class is implemented, it has to be linked in the FragmentationService class in

the package de.unijena.cheminf.mortar.model.fragmentation. All details on

how to achieve the implementation and the linking are described in the JavaDoc

documentation of the IMoleculeFragmenter interface and examples of how to do it can

be found in the same package in the wrapper classes for the fragmentation algorithms

already available in MORTAR. To get started inspecting and augmenting the MORTAR

source code, follow the installation instructions for MORTAR as a software project in the

GitHub readme document (https://github.com/FelixBaensch/MORTAR#readme). If you want

to contribute to MORTAR publicly and openly, be invited to start a pull request to the

MORTAR repository on GitHub (https://github.com/FelixBaensch/MORTAR) after

successfully adding your new functionality. And if you need any assistance, feel free to

contact us via GitHub, e.g. in an issue on the MORTAR repository.

34

https://github.com/FelixBaensch/MORTAR#readme
https://github.com/FelixBaensch/MORTAR


Known issues

Handling of polymers

For example, the ChEBI compound number 15338 represents “a poly(glycerol phosphate)

having an alanyl group attached to the hydroxy function of the repeating unit”. The

information about the polymer (which atoms and bonds are included in the repeating unit

and where the brackets should be placed in a depiction) is included in the MOL and SD file

but gets lost when imported into MORTAR because of the internal conversion to the SMILES

format. Therefore, MORTAR handles the polymer as only one entity of its monomer (Figure

22).

Figure 22: Representation of ChEBI compound 15338 in ChEBI as a polymer versus
representation in MORTAR as a monomer.

Explicit Hydrogen atoms

MORTAR generally turns explicit hydrogen atoms of imported molecules into implicit

hydrogen atom counts of the connected heavy atoms. But in some cases, e.g. when the

hydrogen atoms are needed to define stereochemical configurations, they are not turned into

implicit hydrogen counts. This has the effect that, e.g. among the non-functional group

fragments of the Ertl algorithm, an H2 fragment (SMILES code “[H][H]”) can appear. In

51,000 ChEBI lite 3-star compounds, for example, this fragment appears 114 times.

35

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:15338


Non-standard bond orders in MOL/SD files

The CDK MOL/SD file reader functionality cannot parse bond orders higher than 4 (aromatic

bond; higher bond orders are interpreted as query bonds). For example, the intended metal

complexation bonds in ChEBI compound 48572 (pseudocoenzyme B12) (Figure 23) raise an

error at the import of the structure into MORTAR from an SD or MOL file because they are

defined there as bond order 8. The SMILES representation (that is internally used by

MORTAR in general) does not support such bond types.

Figure 23: Representation of pseudocoenzyme B12 in ChEBI with metal complexation
bonds.

Scaffold Generator fragmentation runtime

The “enumerative fragmentation” routine of Scaffold Generator generates every possible

parent scaffold of a given molecule, i.e. every possible ring system that can result from the

removal of one ring in the first iteration, two rings in the next iteration, etc., until all one ring

scaffolds are enumerated in the last step. Therefore, the number of fragments MORTAR

generates with this routine and the time it needs for the process can scale close to

exponentially with the number of rings in a molecule (since only terminal rings are

36

https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:48572


considered at every step and duplicate parent scaffolds are eliminated, both numbers

usually scale below exponentially). While this is hardly noticeable when dealing with small

molecules, it is important to know when analysing larger molecules, e.g. natural products.

On a standard notebook, it took up to half a second to generate all possible parent scaffolds

for a molecule with 10 rings in MORTAR. For COCONUT natural product CNP0075232, for

example, a molecule with 20 rings, it took about 17 seconds and generated almost 2,500

fragments. For a molecule with 24 rings, like CNP0050552, it took more than a minute to

generate 7,300 parent scaffolds. As said before, with more rings, the time consumption and

fragment number can scale close to exponentially.

This is also important for the cancellation of a fragmentation process: A fragmentation thread

can only be cancelled in between the processing of two molecules, not while a molecule is

processed. So if the processing of one molecule takes more than a minute like in the last

example above, the release of computing resources after the cancellation of a fragmentation

process can take equally long (and longer for molecules with more rings).

Ertl algorithm fragmentation runtime

When processing a molecular data set with the Ertl algorithm for functional group detection

in MORTAR with 1 vs. 2 parallel computation threads, the overall runtime scales in an

unexpected way: processing the complete COCONUT database (406,747 molecules) with

ErtlFunctionalGroupsFinder in default settings on a standard notebook took about 30

minutes employing a single processing thread (see global settings -> “Nr of tasks for

fragmentation setting” above). With two parallel threads, it only took about 100 seconds to

generate 35,791 fragments. This 18-fold speed-up instead of the expected 2-fold decrease

in computation time is currently inexplicable to us. Therefore, we recommend using at least 2

parallel computation threads. For the other fragmentation algorithms available, this effect

could not be observed.

37

https://coconut.naturalproducts.net/compound/coconut_id/CNP0075232
https://coconut.naturalproducts.net/compound/coconut_id/CNP0050552

